مدلسازی صفحهای محیطهای داخلی با استفاده از تصاویر RGB-D
Authors
Abstract:
In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in finding and rescuing missions. With recent advances, mobile robots are used in hazardous missions such as radioactive areas or collapsing buildings. Having the environment’s map beforehand can boost efficiency and effectiveness of the mission. In order to digitize the environment, several 3D scans are needed. However, these scans should be merged according to a global coordination system to create a correct, consistent model. This process is called image registration. If the robot with 3D scanner is able to accurately localize itself, the registration can be done directly by robots pose. However, due to imprecise robot sensors, self-localization is error prone. Therefore, the geometric structure of overlapping 3D scans is considered. In order to registering various points sets, Iterative Closest Point (ICP) algorithm is used. ICP is the most common approach to align point clouds in two consecutive image frames. This algorithm uses a point to point approach. RGB and depth images which are captured by Kinect are used in this study. In order to reducing data points and performing faster 3D map creation, depth images are converted to point clouds and then segmentation is done according to image planes. For this purpose RGB images are segmented by region growing segmentation algorithm. In this algorithm, the image was initially over segmented. This algorithm uses stack data structure and Euclidean distance in Lab color space to segment the image. Euclidean distance in Lab color space describes the resemblance of two colors to each other. In this algorithm, the aim is to label each pixel to a segment. To this end, each unlabeled pixels Euclidean distance to its neighboring mean color is checked to be within a threshold. For over-segmentation, if the distance satisfies the smaller threshold, the more pixels will be merged to the segment. Afterwards a plane was fit to each segment. After segmentation, each segment should be represented by a plane. Eventually, the segments were merged based on the product of normal vectors and plane fitting error criteria. After segmentation, planes were fit to the new segments again. A given number of points were generated on the plane. ICP algorithm was executed on these points and transfer and rotation matrices were obtained. Generating points on the plane results in fewer points. Therefore, the points were reduced and algorithms performance was increased. The results show that the proposed method increases the speed up to 55 and 91 percent in consecutive and non-consecutive frames on average, respectively.
similar resources
مدلسازی زمینآماری ویژگی رنگ زمین با استفاده از پردازش تصاویر مغزههای حفاری در سیستم RGB جهت تفکیک آلتراسیون مس (مطالعه موردی: معادن مس کهنگ و میدوک)
مدلسازی زمینشناسی مستلزم تجربه و دقت بالاست که سابق به روش دستی و امروزه به صورت دستی- کامپیوتری و یا کامپیوتری تهیه میگردد. اغلب این مدلها بر اساس دادههای فاصلهای به دست آمده از مغزههای حفاری اکتشافی و به روش درونیابی خطی به دست میآیند. امروزه روشهای زمینآماری به خصوص کریجینگ شاخص قابلیت بالایی در تهیه مدلهای هندسی- زمینشناسی یافتهاند اما در اغلب مواقع تغییرات ریز زونهای زمینشنا...
full textشناسایی کانالهای مدفون با استفاده از روش برانبارش رنگی (RGB)
تجزیه طیفی دادههای لرزهای، حجم زیادی از داده در بسامدهای مختلف تولید مینماید که میتوان آنها را بصورت مکعبهای تکبسامد تجزیه نمود. از این مکعبها که حاوی اطلاعات مفیدی از روندهای ساختاری و نهشتههای رسوبی میباشند، میتوان جهت نمایش این روندها استفاده نمود. در این مقاله سه روش نمایش این روندها مورد بررسی قرار میگیرد. در روش اول با استفاده از برش زمانی از مکعبهای تکبسامد، تغییرات ...
full textDynamic RGB-D Mapping
Localization and mapping has been an area of great importance and interest to the robotics and computer vision community. It has traditionally been accomplished with range sensors such as lasers and sonars. Recent improvements in processing power coupled with advancements in image matching and motion estimation has allowed development of vision based localization techniques. Despite much progre...
full textCapture de mouvements humains par capteurs RGB-D. (Capture human motions by RGB-D sensor )
Simultaneous apparition of depth and color sensors and super-realtime skeleton detection algorithms led to a surge of new research in Human Motion Capture. This feature is a key part of Human-Machine Interaction. But the applicative context of those new technologies is voluntary, fronto-parallel interaction with the sensor, which allowed the designers certain approximations and requires a speci...
full textOnline-6D-SLAM für RGB-D-Sensoren 6D Visual SLAM for RGB-D Sensors
Zur Automatisierung komplexer Manipulationsaufgaben in dynamischen oder unbekannten Umgebungen benötigt die Steuerungssoftware eines autonomen Roboters eine Repräsentation des Arbeitsbereiches, mit der die Kollisionsfreiheit bei der Durchführung der Aufgabe gewährleistet werden kann. Dieser Beitrag beschreibt ein neues System zur Erstellung von 3D-Umgebungsrepräsentationen aus den RGB-D-Daten n...
full textتشخیص ساختمان داخلی فرش دستباف با استفاده از تصاویر سیتیاسکن میکروفوکوس حاصل از تبدیل رادون معکوس
In addition to medical recognition applications, X-ray CT-scan images are increasingly found to have more innovative and widespread applications. Due to the ability of producing high resolution and high contrast images from soft tissues with low attenuation coefficients, the usage of X-ray micro-focus source, which has a very small focal point (in the range of micrometer), plays an important ro...
full textMy Resources
Journal title
volume 14 issue 3
pages 143- 160
publication date 2017-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023